
HOMEWORK 5 COMPLEX ANALYSIS

KELLER VANDEBOGERT

1. Problem 1

Consider the contour C in the complex plane consisting of a semi-

circle with radius R from θ = 0 to π/4 in the complex plane. Then, we

want to calculate

∫
C

eiz
2

dz

We now break up our integral into 3 different parts. C1 is the arc

lying on the real axis, C2 is the arc Reiθ, θ ∈ (0, π/4), and C3 is the

arc reiπ/4, r ∈ (0, R).

It is clear that eiz
2

is holomorphic and thus by Cauchy’s Theorem,

∫
C

eiz
2

dz = 0

However, we also have:

∫
C

eiz
2

dz =

∫
C1

eiz
2

dz +

∫
C2

eiz
2

dz +

∫
C3

eiz
2

dz

We now wish to calculate these three integrals to find our desired

values. On C1, clearly z = x, dz = dx, and x ∈ (0, R). Thus,

∫
C1

eiz
2

dz =

∫ R

0

eix
2

dx→
∫ ∞
0

eix
2

dx

As R→∞.
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For C2, note that z = Reiθ, θ ∈ (0, π/4). Then,

∣∣∣ ∫
C2

eiz
2

dz
∣∣∣ ≤ ∫

C2

∣∣∣eiz2∣∣∣|dz| = ∫
C2

∣∣∣e−R2 sin(2θ)
∣∣∣|dz|

Using this, we can deduce that e−R
2 sin(2θ) ≤ e−4R

2θ/π, so that

∣∣∣ ∫
C2

eiz
2

dz
∣∣∣ ≤ Rπ

4
e−4R

2θ/π → 0

As R→∞.

For C3, we have that z = reiπ/4, dz = eiπ/4dr, with r ∈ (0, R). Using

this, and noting the direction of our integration,

∫
C3

eiz
2

dz =

∫ 0

R

eir
2(eiπ/4)2eiπ/4dr = −

∫ R

0

e−r
2

eiπ/4dr

Where our final equality uses the fact that eiπ/2 = i. Then, from

here we let R → ∞ and find that we must calculate
∫∞
0
e−x

2
dx. This

is a famous integral, and can be calculated fairly easily by converting

to polar coordinates and using the fact that this integral is separable.

We have:

∫ ∞
−∞

∫ ∞
−∞

e−x
2−y2dydx =

∫ 2π

0

∫ ∞
0

re−r
2

dr

The integral on the right is a trivial substitution, u = r2, so that

du/2 = rdr, and we see:

∫ 2π

0

∫ ∞
0

re−r
2

dr = π

Also,
∫∞
−∞

∫∞
−∞ e

−x2−y2dydx =
∫∞
−∞

∫∞
−∞ e

−x2e−y
2
dydx =

( ∫∞
0
e−x

2
dx
)2

.

So that
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∫ ∞
−∞

e−x
2

dx =
√
π

Since the integrand is an even function, we immediately find:

∫ ∞
0

e−r
2

dr =
√
π/2

Now, using the fact that eiπ/4 =
√

2/2 + i
√

2/2, we see:

−
∫ R

0

e−r
2

eiπ/4dr = −
(√2π

4
+ i

√
2π

4

)
Combining the work for the above 3 contours, we have:

0 =

∫
C1

eiz
2

dz +

∫
C2

eiz
2

dz +

∫
C3

eiz
2

dz

=

∫ ∞
0

eix
2

dx−
(√2π

4
+ i

√
2π

4

)
=⇒

∫ ∞
0

eix
2

dx =
(√2π

4
+ i

√
2π

4

)(1.1)

By Euler’s Formula,
∫∞
0
eix

2
dx =

∫∞
0

cos(x2)dx+i
∫∞
0

sin(x2)dx, and

comparing real and imaginary parts with the above, we find:

∫ ∞
0

cos(x2)dx =

∫ ∞
0

sin(x2)dx =

√
2π

4

As desired.

2. Problem 2

Note that f(z) as given in the problem statement is entire and as

such its integral is independent of the contour γ. The proof of this

is fairly trivial, since if you took two different arcs from one point to

the other, the integral over these contours would be 0 using Cauchy’s
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theorem. Separating these two integrals, we then see they coincide.

Thus, we merely need to evaluate antiderivatives.

∫
γ

(3z2 +5z+ i)dz = z3|1i +5z2/2|1i + iz|1i = 1− i3 +5/2(1− i2)+ i(1− i)

Which simplifies to 7+2i. (Note: If indeed you make the substitution

z = it+ (1− t), with t ∈ (0, 1), we still find the same answer).

3. Problem 3

Again, by the logic of Problem 2, we merely need to evaulate at the

antiderivative of ez, which is obviously ez. Then,

∫
γ

ezdz = ez
∣∣−1
1

=
1

e
− e

And we are done.

4. Problem 4

Using the definition of cosine,

cos(z + π/2) =
ei(z+π/2) + e−i(z+π/2)

2

=
eiπ/2eiz + e−iπ/2e−iz

2

=
ieiz − ie−iz

2

= −e
iz − e−iz

2i
= − sin(z)

(4.1)

Similarly,
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cos(z + π) =
ei(z+π) + e−i(z+π)

2

=
eiπeiz + e−iπe−iz

2

=
−1eiz − 1e−iz

2

= −e
iz + e−iz

2
= − cos(z)

(4.2)

And,

cos(z + 2π) =
ei(z+2π) + e−i(z+2π)

2

=
e2iπeiz + e−2iπe−iz

2

=
eiz + e−iz

2

=
eiz − e−iz

2
= cos(z)

(4.3)

Now, we can use the above to do the case for the sine function. Thus,

sin(z + π/2) = − cos(z + π) = cos(z), so that

sin(z + π/2) = cos(z)

Similarly, note that

sin(z + π) = − cos(z + π + π/2) = cos(z + π/2) = − sin(z)

=⇒ sin(z + π) = − sin(z)

Finally,

sin(z + 2π) = − cos(z + 2π + π/2) = − cos(z + π/2) = sin(z)

=⇒ sin(z + 2π) = sin(z)

and we are done.



6 KELLER VANDEBOGERT

5. Problem 5

Using the definitions for cosine and sine:

cos(iy) =
ei(iy) + e−i(iy)

2

=
e−y + ey

2
= cosh(y)

(5.1)

sin(iy) =
ei(iy) − e−i(iy)

2i

= −i
(e−y − ey

2

)
= i sinh(y)

(5.2)

Using the above and employing the sum formulas for trig functions:

cos(x+ iy) = cos(x) cos(iy)− sin(x) sin(iy)

= cos(x) cosh(y)− i sin(x) sinh(y)
(5.3)

And similarly,

sin(x+ iy) = cos(x) sin(iy) + cos(iy) sin(x)

= sin(x) cosh(y) + i cos(x) sinh(y)
(5.4)

For the complex forms of the above functions, it is natural to define

cosh(z) :=
ez + e−z

2

sinh(z) :=
ez − e−z

2

Then, to differentiate merely recall the derivative of ez (and the chain

rule):

(
cosh(z)

)′
=
ez + (−1)e−z

2
=
ez − e−z

2
= sinh(z)(

sinh(z)
)′

=
ez − (−1)e−z

2
=
ez + e−z

2
= cosh(z)
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And we are done.


